Copied to
clipboard

G = C62.33C23order 288 = 25·32

28th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.33C23, (C6×Dic6)⋊6C2, (C6×D12).9C2, (C2×D12).8S3, (C3×C12).76D4, D6⋊Dic331C2, (C2×Dic6)⋊10S3, (C2×C12).131D6, (C22×S3).9D6, C6.4(D42S3), C4.7(D6⋊S3), C12.53(C3⋊D4), (C6×C12).93C22, (C2×Dic3).12D6, C324(C4.4D4), C33(C23.12D6), C33(C12.23D4), C6.26(Q83S3), C2.11(D12⋊S3), (C6×Dic3).76C22, (C2×C4).113S32, (C4×C3⋊Dic3)⋊4C2, C22.90(C2×S32), (C3×C6).84(C2×D4), C6.76(C2×C3⋊D4), (S3×C2×C6).9C22, (C3×C6).20(C4○D4), C2.11(C2×D6⋊S3), (C2×C6).52(C22×S3), (C2×C3⋊Dic3).119C22, SmallGroup(288,511)

Series: Derived Chief Lower central Upper central

C1C62 — C62.33C23
C1C3C32C3×C6C62S3×C2×C6D6⋊Dic3 — C62.33C23
C32C62 — C62.33C23
C1C22C2×C4

Generators and relations for C62.33C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=e2=b3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=a3c, ece-1=b3c, ede-1=b3d >

Subgroups: 586 in 167 conjugacy classes, 52 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C3×S3, C3×C6, C3×C6, Dic6, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C4.4D4, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C62, C4×Dic3, D6⋊C4, C6.D4, C2×Dic6, C2×D12, C6×D4, C6×Q8, C3×Dic6, C3×D12, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C23.12D6, C12.23D4, D6⋊Dic3, C4×C3⋊Dic3, C6×Dic6, C6×D12, C62.33C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4.4D4, S32, D42S3, Q83S3, C2×C3⋊D4, D6⋊S3, C2×S32, C23.12D6, C12.23D4, D12⋊S3, C2×D6⋊S3, C62.33C23

Smallest permutation representation of C62.33C23
On 96 points
Generators in S96
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 95 11 93 9 91)(8 96 12 94 10 92)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)(43 53 45 49 47 51)(44 54 46 50 48 52)(55 63 57 65 59 61)(56 64 58 66 60 62)(67 74 69 76 71 78)(68 75 70 77 72 73)(79 86 83 90 81 88)(80 87 84 85 82 89)
(1 60)(2 55)(3 56)(4 57)(5 58)(6 59)(7 51)(8 52)(9 53)(10 54)(11 49)(12 50)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)
(1 41 16 36)(2 40 17 35)(3 39 18 34)(4 38 13 33)(5 37 14 32)(6 42 15 31)(7 75 93 72)(8 74 94 71)(9 73 95 70)(10 78 96 69)(11 77 91 68)(12 76 92 67)(19 53 28 47)(20 52 29 46)(21 51 30 45)(22 50 25 44)(23 49 26 43)(24 54 27 48)(55 85 65 80)(56 90 66 79)(57 89 61 84)(58 88 62 83)(59 87 63 82)(60 86 64 81)
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 86 93 81)(8 87 94 82)(9 88 95 83)(10 89 96 84)(11 90 91 79)(12 85 92 80)(31 43 42 49)(32 44 37 50)(33 45 38 51)(34 46 39 52)(35 47 40 53)(36 48 41 54)(55 67 65 76)(56 68 66 77)(57 69 61 78)(58 70 62 73)(59 71 63 74)(60 72 64 75)

G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,95,11,93,9,91)(8,96,12,94,10,92)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39)(43,53,45,49,47,51)(44,54,46,50,48,52)(55,63,57,65,59,61)(56,64,58,66,60,62)(67,74,69,76,71,78)(68,75,70,77,72,73)(79,86,83,90,81,88)(80,87,84,85,82,89), (1,60)(2,55)(3,56)(4,57)(5,58)(6,59)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,75,93,72)(8,74,94,71)(9,73,95,70)(10,78,96,69)(11,77,91,68)(12,76,92,67)(19,53,28,47)(20,52,29,46)(21,51,30,45)(22,50,25,44)(23,49,26,43)(24,54,27,48)(55,85,65,80)(56,90,66,79)(57,89,61,84)(58,88,62,83)(59,87,63,82)(60,86,64,81), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,86,93,81)(8,87,94,82)(9,88,95,83)(10,89,96,84)(11,90,91,79)(12,85,92,80)(31,43,42,49)(32,44,37,50)(33,45,38,51)(34,46,39,52)(35,47,40,53)(36,48,41,54)(55,67,65,76)(56,68,66,77)(57,69,61,78)(58,70,62,73)(59,71,63,74)(60,72,64,75)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,95,11,93,9,91)(8,96,12,94,10,92)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39)(43,53,45,49,47,51)(44,54,46,50,48,52)(55,63,57,65,59,61)(56,64,58,66,60,62)(67,74,69,76,71,78)(68,75,70,77,72,73)(79,86,83,90,81,88)(80,87,84,85,82,89), (1,60)(2,55)(3,56)(4,57)(5,58)(6,59)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,75,93,72)(8,74,94,71)(9,73,95,70)(10,78,96,69)(11,77,91,68)(12,76,92,67)(19,53,28,47)(20,52,29,46)(21,51,30,45)(22,50,25,44)(23,49,26,43)(24,54,27,48)(55,85,65,80)(56,90,66,79)(57,89,61,84)(58,88,62,83)(59,87,63,82)(60,86,64,81), (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,86,93,81)(8,87,94,82)(9,88,95,83)(10,89,96,84)(11,90,91,79)(12,85,92,80)(31,43,42,49)(32,44,37,50)(33,45,38,51)(34,46,39,52)(35,47,40,53)(36,48,41,54)(55,67,65,76)(56,68,66,77)(57,69,61,78)(58,70,62,73)(59,71,63,74)(60,72,64,75) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,95,11,93,9,91),(8,96,12,94,10,92),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39),(43,53,45,49,47,51),(44,54,46,50,48,52),(55,63,57,65,59,61),(56,64,58,66,60,62),(67,74,69,76,71,78),(68,75,70,77,72,73),(79,86,83,90,81,88),(80,87,84,85,82,89)], [(1,60),(2,55),(3,56),(4,57),(5,58),(6,59),(7,51),(8,52),(9,53),(10,54),(11,49),(12,50),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)], [(1,41,16,36),(2,40,17,35),(3,39,18,34),(4,38,13,33),(5,37,14,32),(6,42,15,31),(7,75,93,72),(8,74,94,71),(9,73,95,70),(10,78,96,69),(11,77,91,68),(12,76,92,67),(19,53,28,47),(20,52,29,46),(21,51,30,45),(22,50,25,44),(23,49,26,43),(24,54,27,48),(55,85,65,80),(56,90,66,79),(57,89,61,84),(58,88,62,83),(59,87,63,82),(60,86,64,81)], [(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,86,93,81),(8,87,94,82),(9,88,95,83),(10,89,96,84),(11,90,91,79),(12,85,92,80),(31,43,42,49),(32,44,37,50),(33,45,38,51),(34,46,39,52),(35,47,40,53),(36,48,41,54),(55,67,65,76),(56,68,66,77),(57,69,61,78),(58,70,62,73),(59,71,63,74),(60,72,64,75)]])

42 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I6J6K6L6M12A···12H12I12J12K12L
order122222333444444446···6666666612···1212121212
size11111212224221212181818182···2444121212124···412121212

42 irreducible representations

dim1111122222222444444
type++++++++++++-+-+
imageC1C2C2C2C2S3S3D4D6D6D6C4○D4C3⋊D4S32D42S3Q83S3D6⋊S3C2×S32D12⋊S3
kernelC62.33C23D6⋊Dic3C4×C3⋊Dic3C6×Dic6C6×D12C2×Dic6C2×D12C3×C12C2×Dic3C2×C12C22×S3C3×C6C12C2×C4C6C6C4C22C2
# reps1411111222248122214

Matrix representation of C62.33C23 in GL6(𝔽13)

1200000
0120000
0012100
0012000
0000120
0000012
,
1200000
0120000
001000
000100
0000121
0000120
,
0120000
1200000
001000
000100
0000106
000033
,
010000
1200000
000100
001000
000029
0000411
,
500000
080000
0012000
0001200
0000120
0000012

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,3,0,0,0,0,6,3],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,9,11],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C62.33C23 in GAP, Magma, Sage, TeX

C_6^2._{33}C_2^3
% in TeX

G:=Group("C6^2.33C2^3");
// GroupNames label

G:=SmallGroup(288,511);
// by ID

G=gap.SmallGroup(288,511);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,120,422,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=e^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
×
𝔽